2D Numerical Study of Heat Transfer Enhancement Using Fish-Tail Locomotion Vortex Generators
نویسندگان
چکیده
منابع مشابه
Numerical Study on Improvement of Hydrofoil Performance using Vortex Generators (RESEARCH NOTE)
In this paper the effects of rigid triangular passive vortex generators on a hydrofoil were investigated numerically. In the first step using the Finite Volume Method the bare hydrofoil were modeled and the results of lift and drag coefficients were validated using experimental data. In the next step the hydrofoil armed with vortex generators was modeled and its effect on the hydrofoil perfo...
متن کاملNumerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers
In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nus...
متن کاملAir-side heat transfer enhancement of a refrigerator evaporator using vortex generation
In most domestic and commercial refrigeration systems, frost forms on the air-side surface of the air-to-refrigerant heat exchanger. Frost-tolerant designs typically employ a large fin spacing in order to delay the need for a defrost cycle. Unfortunately, this approach does not allow for a very high air-side heat transfer coefficient, and the performance of these heat exchangers is often air-si...
متن کاملSingle and Two-Phase Heat Transfer Enhancement Using Longitudinal Vortex Generator in Narrow Rectangular Channel
متن کامل
Nanofluids for Heat Transfer Enhancement – A Review
A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling of Engineering Problems
سال: 2021
ISSN: 2369-0739,2369-0747
DOI: 10.18280/mmep.080307